Generating adversarial examples is the art of creating a noise that is added to an input signal of a classifying neural network, and thus changing the network’s classification, while keeping the noise as tenuous as possible. While the subject is well-researched in the 2D regime, it is lagging behind in the 3D regime, i.e. attacking a classifying network that works on 3D point-clouds or meshes and, for example, classifies the...
Categories:
Machine Learning

